Tetrahedron Letters Vol. 21, pp 3191 - 3194 © Pergamon Press Ltd. 1980. Printed in Great Britain 0040-4039/80/0808-3191\$02.00/0

DIMERIC SESQUITERPENE LACTONES : STRUCTURE OF ABSINTHIN. J. Beauhaire ^{a,b}, J.L. Fourrey ^a and M. Vuilhorgne ^a, a) Institut de Chimie des Substances Naturelles, 91190 Gif-sur-Yvette (France). b) E.N.S.I.A., Allée des Olympiades, 91305 Massy (France).

J.Y. Lallemand.

Laboratoire de Chimie, E.N.S., 24, rue Lhomond, 75231 Paris Cedex 05 (France).

Summary : Absinthin, a constituent of A. absinthium, has been given structure 2.

The two main gualanolide constituents 1 of <u>Artemisia absinthium</u> are artabsin 2 and absinthin the complete structure of which has not been elucidated 3,4 . Absinthin (MW 496) is a dimeric sesquiterpene lactone giving rise to artabsin <u>1</u> (MW 248) upon heating ⁴. This observation strongly suggests that the dimerization process (possibly through a Diels-Alder reaction) to give absinthin, involves the pentadiene system of two gualanolides having the same seven membered ring system fused to the lactone ring as in artabsin <u>1</u>.

Due to its dimeric nature absinthin exhibits a pseudosymmetry which renders a detailed analysis of its 13 C NMR spectrum by standard methods very difficult. However a comprehensive interpretation of the 13 C and 1 H NMR spectra could be secured from the off-resonance spectra at 62.86 MHz (1 H 250MHz) obtained at various decoupling powers 5 leading thereby to structure 2 for absinthin (Table).

The low field region of the 13 C NMR spectrum of absinthin <u>2</u> exhibits six signals assigned to two lactones carbonyls and to four vinylic carbons (one doublet and three singlets). The presence of a tri- as well as a tetrasubstituted double bond in absinthin <u>2</u> is also well established from the ¹H NMR spectrum (one vinylic proton and two vinylic

3191

methyls); it is compatible with the structural units I and I', arrows indicating the only possible Diels-Alder linkage positions.

Careful analysis of the 13 C NMR off-resonance spectra shows that absinthin 2 has in addition to the above-mentioned six sp² type carbons, three quaternary sp³ carbons (singlet) two of them corresponding to carbon C-10 and C-10', eleven methines (doublet), four methylenes (triplet) and six methyls (quartet). As the four triplets must be attributed to carbons 8, 8', 9 and 9' it clearly appears that carbons 2' and 3', 2 and 5 (the remaining quaternary carbon) are substituted and correspond to the carbons involved in the Diels Alder reaction. In this case, subunits I and I' would derive from 3, as diene and as dienophile respectively, leading to only two types of <u>endo</u>-adducts II and III.

Proton decoupling experiments performed with absinthin 2 at 250 MHz after addition of Eu^{III}(fod)₃(LIS) reagent show, in addition to the H-G and H-G' doublets, six well-separated signals (H_A-H_F) between <u>ca</u>. 5.5 and 2 ppm. The chemical shifts observed without LIS reagent and coupling patterns (Table)⁶ are in agreement with those given for the <u>endo</u>-cyclopentadiene dimer IV⁷. By referring to the chemical shift values of H_A , H_B and H_F the assignments of H-3, H-2 and H-1 becomes straightforward. The most important observation is that H_C , neighbour of H_B , has two further adjacent protons H_D and H_E . This is consistent solely with the structure III, protons H_C H_D and H_E being attributed to H-2', H-3' and H-1', respectively.

The upfield shift of the proton H-1' in the standard ¹H NMR spectrum of absinthin <u>2</u> is in agreement with the proposed stereochemistry, this proton being in the shielding zone of the C-3, C-4 double bond.

3192

Posi- tion	1 1'	2	- 3 3'	4	5 5'	6 6'	7 7'	b 3,8'	b 9,9'	ь 10,10	b 11,11'	b 12,12'
13 _C a	71.3 57.0	45.6 46.5	122.4 5 8. 8	146.6 135.4	64.0 147.8	82.7 81.5	46.3 49.2	27.5 23.6	43.6 42.4	73.9 71.6	42.2 42.0	179.3 179.8
1 _H a	2.16 2.29	2.86 2.84	5.50 3.21			4.70 4.6 0	1.80 1.64	1.80 1.60	1.80 1.60	 	2.30 2.30	
Posi- tion	13,13	2 14 14'	15 15'	_			¹ H cou	upling c	onstant	s (Hz).		

13.6	J _{2,3} ≈ 2,5	$J_{2,2'} = 3,5$	J _{2',3} , = 8
18.3	J _{2',1'} = 1,5	$J_{2,1} = 0,5.$	
1.78			

Table⁶

- a Chemical shifts in ppm/TMS : upper and lower lines refer to numbering of subunits I and I' respectively.
- b Assignments of upper and lower lines may be reversed.

1.90

- c Assigned from ${}^{1}H_{-}{}^{13}C$ selective decoupling experiments 5 . d Assigned from ${}^{1}H_{-}$ LIS experiments.

29.4

32.2

1.20^d

1.31

13.0

12.1

1.25

1.21

13_Ca

1_Ha

The last point deserving a discussion is the stereochemistry at C-10 and C-10'. The configuration at C-10 (hence C-1) follows from the acid isomerisation of absinthin $\underline{2}$ into anabsinthin $\underline{4}^3$. This compound is devoid of a trisubstituted double bond and possesses three tertiary methyls and one vinylic methyl. Examination of the ¹³C NMR spectrum of $\underline{4}$ suggests that the cyclization of $\underline{2}$ into anabsinthin $\underline{4}$ takes place without skeletal rearrangement and involves the hydroxyl at C-10 which must lie close to the C-3, C-4 double bond as indicated on structure $\underline{2}$. Moreover, dehydration of anabsinthin $\underline{4}$ to yield a diene ⁸ (λ_{max} =256nm) denonstrates that the hydroxyl at C-10' does not participate in this reaction. Finally, LIS experiments on 2 also clearly show that the main binding site of Eu^{III} is the hydroxyl at C-10', the most shifted signals being the methyl at C-10' and H-2'. This observation supports the stereochemistry at C-1' as depicted in structure $\underline{2}$ and accordingly the two putative Diels-Alder partners must have the same structure $\underline{3}^9$.

Acknowledgments : We are very grateful to Dr. J. Polonsky and Mr. J. Cavazza for their encouragements throughout this work. We also thank Martini & Rossi (France) for financial support to J.E.

- REFERENCES. 1 For pertinent reviews see : N.H. Fischer, E.J. Olivier and H.D. Fischer in "Progress in the Chemistry of Organic Natural Products", Springer Verlag, (1979) <u>38</u>, 47 and R.G. Kelsey and F. Shafizadeh, Phytochemistry, (1979), <u>18</u>, 1591.
- 2 K. Vokac, Z. Samek, V. Herout and F. Sorm, Collect. Czech. Chem. Commun., (1972), <u>37</u>, 1346 and references cited therein.
- 3 L. Novotny, V. Herout and F. Sorm, <u>Ibid</u>., (1960), <u>25</u>, 1492 and 1500.
- 4 K. Vokac, Z. Samek, V. Herout and F. Sorm, Tetrahedron Letters, (1968), 3855.
- The following acquisition conditions were used on a F.T. Cameca TSN 250 spectrometer : a) Presaturation of protons during 0.7 sec. at high decoupling power $(\gamma H_2 \sim 3.000 \text{Hz})$, b) ¹³C acquisition with ¹H decoupler turned to low power $(\gamma H_2 \sim 200-400 \text{ Hz})$. This kind of experiments which will be described elsewhere by one of us (J.Y. L.) allow the assignments of carbons bearing identified protons separated by ~ 10 Hz. Line distortion are minimized by proton presaturation, which also restores NOE sensitivity enhancement.
- 6 The chemical shifts given are those observed in the absence of shift reagent.
- 7 R.G. Foster and M.C. Mc lvor, J. Chem. Soc. (B), (1969), 188.
- 8 The ease of this reaction is indicative of a trans-elimination.
- 9 After completion of this work we have been aware (Chemical Abstracts, (1980), 92, 59025q) that S.Z. Kazymov et al. have communicated (11thI.U.P.A.C. Natur. Prod. Symp., 1978) a planar structure for absinthin in accord with <u>2</u>. (Received in France 15 June 1980)